Real-Time Voluntary Motion Prediction and Parkinson’s Tremor Reduction Using Deep Neural Networks

نویسندگان

چکیده

Wearable tremor suppression devices (WTSD) have been considered as a viable solution to manage parkinsonian tremor. WTSDs showed their ability improve the quality of life individuals suffering from tremor, by helping them perform activities daily living (ADL). Since has shown be nonstationary, nonlinear, and stochastic in nature, performance models used is affected inability adapt nonlinear behaviour Another drawback that limitation estimate or predict one step ahead, which introduces delay when real time with WTSDs, compromises performance. To address these issues, this work proposes deep neural network model learns correlations nonlinearities voluntary motion, capable multi-step prediction minimal delay. A generalized task user-independent presented. The achieved an average estimation percentage accuracy 99.2%. future motion 10, 20, 50, 100 steps ahead was 97.0%, 94.0%, 91.6%, 89.9%, respectively, low 1.5 ms for ahead. proposed also 93.8% ± 1.5% reduction it tested experimental setup time. improvement 25% over Weighted Fourier Linear Combiner (WFLC), estimator commonly WTSDs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-time Prediction of Taxi Demand Using Recurrent Neural Networks

Predicting taxi demand throughout a city can help to organize the taxi fleet and minimize the wait-time for passengers and drivers. In this paper, we propose a sequence learning model that can predict future taxi requests in each area of a city based on the recent demand and other relevant information. Remembering information from the past is critical here since taxi requests in the future are ...

متن کامل

Prediction of Parkinson's Disease Tremor Onset Using Artificial Neural Networks

In this paper we present the initial results using an artificial neural network to predict the onset of Parkinson’s Disease tremors in a human subject. Data for the network was obtained from implanted deep brain electrodes. A tuned artificial neural network was shown to be able to identify the pattern of the onset tremor from these real time recordings.

متن کامل

rodbar dam slope stability analysis using neural networks

در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...

Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction

The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning) predict the visual world at all times and that errors between the prediction and the ...

متن کامل

Optimal Real-time Landing Using Deep Networks

Optimal trajectories for spacecraft guidance, be it during orbital transfers or landing sequences are often pre-computed on ground and used as nominal desired solutions later tracked by a secondary control system. Linearization of the dynamics around such nominal profiles allows to cancel the error during the actual navigation phase when the trajectory is executed. In this study, instead, we as...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Neural Systems and Rehabilitation Engineering

سال: 2021

ISSN: ['1534-4320', '1558-0210']

DOI: https://doi.org/10.1109/tnsre.2021.3097007